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The continuum hypothesis was stated byCantor in 1877. He labored unsuccessfully to prove
it, becoming extremely dismayed that he could not. By 1900, settling the continuum hypothesis
was considered to be among the most important unsolved problems in mathematics. It was the
first problem posed by David Hilbert in his famous 1900 list of open problems in mathematics.

The continuum hypothesis is still an open question and remains an area for active research.
However, it has been shown that it can be neither proved nor disproved under the standard set
theory axioms in modern mathematics, the Zermelo-Fraenkel axioms. The Zermelo-Fraenkel
axioms were formulated to avoid the paradoxes of naive set theory, such as Russell’s paradox,
but there is much controversy whether they should be replaced by some other set of axioms for
set theory.

Exercises

1. Determine whether each of these sets is finite, countably
infinite, or uncountable. For those that are countably in-
finite, exhibit a one-to-one correspondence between the
set of positive integers and that set.
a) the negative integers
b) the even integers
c) the integers less than 100
d) the real numbers between 0 and 1

2
e) the positive integers less than 1,000,000,000
f ) the integers that are multiples of 7

2. Determine whether each of these sets is finite, countably
infinite, or uncountable. For those that are countably in-
finite, exhibit a one-to-one correspondence between the
set of positive integers and that set.
a) the integers greater than 10
b) the odd negative integers
c) the integers with absolute value less than 1,000,000
d) the real numbers between 0 and 2
e) the set A× Z+ where A = {2, 3}
f ) the integers that are multiples of 10

3. Determine whether each of these sets is countable or un-
countable. For those that are countably infinite, exhibit
a one-to-one correspondence between the set of positive
integers and that set.
a) all bit strings not containing the bit 0
b) all positive rational numbers that cannot be written
with denominators less than 4

c) the real numbers not containing 0 in their decimal
representation

d) the real numbers containing only a finite number of
1s in their decimal representation

4. Determine whether each of these sets is countable or un-
countable. For those that are countably infinite, exhibit
a one-to-one correspondence between the set of positive
integers and that set.
a) integers not divisible by 3
b) integers divisible by 5 but not by 7
c) the real numbers with decimal representations con-
sisting of all 1s

d) the real numbers with decimal representations of all
1s or 9s

5. Show that a finite group of guests arriving at Hilbert’s
fully occupied Grand Hotel can be given rooms without
evicting any current guest.

6. Suppose that Hilbert’s Grand Hotel is fully occupied, but
the hotel closes all the even numbered rooms for mainte-
nance. Show that all guests can remain in the hotel.

7. Suppose that Hilbert’s Grand Hotel is fully occupied on
the day the hotel expands to a second building which also
contains a countably infinite number of rooms. Show that
the current guests can be spread out to fill every room of
the two buildings of the hotel.

8. Show that a countably infinite number of guests arriv-
ing at Hilbert’s fully occupied Grand Hotel can be given
rooms without evicting any current guest.

∗9. Suppose that a countably infinite number of buses, each
containing a countably infinite number of guests, arrive
at Hilbert’s fully occupied Grand Hotel. Show that all the
arriving guests can be accommodated without evicting
any current guest.

10. Give an example of two uncountable sets A and B such
that A− B is
a) finite.
b) countably infinite.
c) uncountable.

11. Give an example of two uncountable sets A and B such
that A ∩ B is
a) finite.
b) countably infinite.
c) uncountable.

12. Show that ifA and B are sets andA ⊂ B then |A| ≤ |B|.
13. Explain why the set A is countable if and only if |A| ≤

|Z+|.
14. Show that if A and B are sets with the same cardinality,

then |A| ≤ |B| and |B| ≤ |A|.
15. Show that if A and B are sets, A is uncountable, and

A ⊆ B, then B is uncountable.
16. Show that a subset of a countable set is also countable.
17. If A is an uncountable set and B is a countable set, must

A− B be uncountable?
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18. Show that if A and B are sets |A| = |B|, then |P(A)| =
|P(B)|.

19. Show that if A, B, C, and D are sets with |A| = |B| and
|C| = |D|, then |A× C| = |B ×D|.

20. Show that if |A| = |B| and |B| = |C|, then |A| = |C|.
21. Show that ifA, B, and C are sets such that |A| ≤ |B| and

|B| ≤ |C|, then |A| ≤ |C|.
22. Suppose that A is a countable set. Show that the set B is

also countable if there is an onto function f fromA to B.
23. Show that if A is an infinite set, then it contains a count-

ably infinite subset.
24. Show that there is no infinite setA such that |A| < |Z+| =
ℵ0.

25. Prove that if it is possible to label each element of an
infinite set S with a finite string of keyboard characters,
from a finite list characters, where no two elements of S
have the same label, then S is a countably infinite set.

26. Use Exercise 25 to provide a proof different from that
in the text that the set of rational numbers is countable.
[Hint: Show that you can express a rational number as a
string of digits with a slash and possibly a minus sign.]

∗27. Show that the union of a countable number of countable
sets is countable.

28. Show that the set Z+ × Z+ is countable.
∗29. Show that the set of all finite bit strings is countable.
∗30. Show that the set of real numbers that are solutions of

quadratic equations ax2 + bx + c = 0, where a, b, and c
are integers, is countable.

∗31. Show that Z+ × Z+ is countable by showing that
the polynomial function f : Z+ × Z+ → Z+ with
f (m, n) = (m + n− 2)(m + n− 1)/2+ m is one-to-
one and onto.

∗32. Show that when you substitute (3n + 1)2 for each occur-
rence of n and (3m + 1)2 for each occurrence ofm in the
right-hand side of the formula for the function f (m, n)
in Exercise 31, you obtain a one-to-one polynomial func-
tion Z× Z→ Z. It is an open question whether there is
a one-to-one polynomial function Q×Q→ Q.

33. Use the Schröder-Bernstein theorem to show that (0, 1)
and [0, 1] have the same cardinality

34. Show that (0, 1) and R have the same cardinality. [Hint:
Use the Schröder-Bernstein theorem.]

35. Show that there is no one-to-one correspondence from
the set of positive integers to the power set of the set of
positive integers. [Hint:Assume that there is such a one-
to-one correspondence. Represent a subset of the set of
positive integers as an infinite bit string with ith bit 1 if i
belongs to the subset and 0 otherwise. Suppose that you
can list these infinite strings in a sequence indexed by the
positive integers. Construct a new bit string with its ith
bit equal to the complement of the ith bit of the ith string
in the list. Show that this new bit string cannot appear in
the list.]

∗36. Show that there is a one-to-one correspondence from the
set of subsets of the positive integers to the set real num-
bers between 0 and 1. Use this result and Exercises 34 and
35 to conclude that ℵ0 < |P(Z+)| = |R|. [Hint: Look at
the first part of the hint for Exercise 35.]

∗37. Show that the set of all computer programs in a partic-
ular programming language is countable. [Hint: A com-
puter program written in a programming language can be
thought of as a string of symbols from a finite alphabet.]

∗38. Show that the set of functions from the positive inte-
gers to the set {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} is uncountable.
[Hint: First set up a one-to-one correspondence between
the set of real numbers between 0 and 1 and a subset of
these functions. Do this by associating to the real number
0.d1d2 . . . dn . . . the function f with f (n) = dn.]

∗39. We say that a function is computable if there is a com-
puter program that finds the values of this function. Use
Exercises 37 and 38 to show that there are functions that
are not computable.

∗40. Show that if S is a set, then there does not exist an onto
function f from S to P(S), the power set of S. Con-
clude that |S| < |P(S)|. This result is known asCantor’s
theorem. [Hint: Suppose such a function f existed. Let
T = {s ∈ S | s ̸∈ f (s)} and show that no element s can
exist for which f (s) = T .]

2.6 Matrices

Introduction

Matrices are used throughout discrete mathematics to express relationships between elements
in sets. In subsequent chapters we will use matrices in a wide variety of models. For instance,
matrices will be used in models of communications networks and transportation systems. Many
algorithmswill be developed that use thesematrixmodels.This section reviewsmatrix arithmetic
that will be used in these algorithms.


